Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Environmental DNA (eDNA) is frequently used to infer distributions of microorganisms in Antarctica. Their distributions relative to environmental variables are, in turn, sometimes used to infer their physiological range (and a relationship between the two is generally assumed for conservation purposes). We sought to determine whether ecological inferences based on distributions accurately reflect tolerances of the organisms concerned, using 249 legacy non-marine samples from a latitudinal gradient between 72 and 86°S, Antarctica. A cyanobacterium, a heterotrophic bacterium, two eukaryotic algae, two fungi, and a moss were isolated into culture, and their field distributions inferred using eDNA analysis of the samples above. Tolerances of each organism with respect to environmental predictors were then inferred from the eDNA distribution and metadata using Generalised Additive Models. We then measured growth of the cultured isolates in response to a set of these predictors. Laboratory responses were then compared to inferences from the eDNA/metadata. Predictions from eDNA/metadata agreed with the results of physiological laboratory experiments for strains that were detected at high taxonomic resolution in the field samples. However, errors were never completely eliminated, and direct contradictions occurred when strains were represented at lower taxonomic resolution in the field data. We found that accurate ecological inference from eDNA studies would be best achieved via maximising both taxonomic resolution (through marker choice/read length) and ecological signal (through careful sampling design and rigorous metadata collection).more » « lessFree, publicly-accessible full text available March 1, 2026
-
Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.more » « less
-
Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus ) aurantiacus , exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris , the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii , the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris -induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization.more » « less
-
ABSTRACT Priority effects, where the order and timing of species arrival influence the assembly of ecological communities, have been observed in a variety of taxa and habitats. However, the genetic and molecular basis of priority effects remains unclear, hindering a better understanding of when priority effects will be strong. We sought to gain such an understanding for the nectar yeastMetschnikowia reukaufiicommonly found in the nectar of our study plant, the hummingbird‐pollinatedDiplacus(Mimulus)aurantiacus. In this plant,M.reukaufiican experience strong priority effects when it reaches flowers after other nectar yeasts, such asM.rancensis. After inoculation into two contrasting types of synthetic nectar simulating early arrival ofM.rancensis, we conducted whole‐transcriptome sequencing of 108 strains ofM.reukaufii. We found that several genes were differentially expressed inM.reukaufiistrains when the nectar had been conditioned by growth ofM.rancensis. Many of these genes were associated with amino acid metabolism, suggesting thatM.reukaufiistrains responded molecularly to the reduction in amino acid availability caused byM.rancensis. Furthermore, investigation of expression quantitative trait loci (eQTLs) revealed that genes involved in amino acid transport and resistance to antifungal compounds were enriched in some genetic variants ofM.reukaufii. We also found that gene expression was associated with population growth rate, particularly when amino acids were limited. These results suggest that intraspecific genetic variation in the ability of nectar yeasts to respond to nutrient limitation and direct fungal competition underpins priority effects in this microbial system.more » « less
An official website of the United States government
